237 research outputs found

    Simulating hard photon production with WHIZARD

    Full text link
    One of the important goals of the proposed future e+e−e^+e^- collider experiments is the search for dark matter particles using different experimental approaches. The most general search approach is based on the mono-photon signature, which is expected when production of the invisible final state is accompanied by a hard photon from initial state radiation. Analysis of the energy spectrum and angular distributions of those photons can shed light on the nature of dark matter and its interactions. Therefore, it is crucial to be able to simulate the signal and background samples in a uniform framework, to avoid possible systematic biases. The WHIZARD program is a flexible tool, which is widely used by e+e−e^+e^- collaborations for simulation of many different "new physics" scenarios. We propose the procedure of merging the matrix element calculations with the lepton ISR structure function implemented in WHIZARD. It allows us to reliably simulate the mono-photon events, including the two main Standard Model background processes: radiative neutrino pair production and radiative Bhabha scattering. We demonstrate that cross sections and kinematic distributions of mono-photon in neutrino pair-production events agree with corresponding predictions of the KKMC, a Monte Carlo generator providing perturbative predictions for SM and QED processes, which has been widely used in the analysis of LEP data.Comment: 17 pages, 8 figures, 6 tables, 2 example steering file

    Erratum to: Determination of the strong coupling constant {{\varvec{\alpha _{\mathrm{s}} (m_{\mathrm{Z}})}}} in next-to-next-to-leading order QCD using H1 jet cross section measurements

    Get PDF

    Unbinned Deep Learning Jet Substructure Measurement in High Q2Q^2 ep collisions at HERA

    Get PDF
    The radiation pattern within high energy quark- and gluon-initiated jets (jet substructure) is used extensively as a precision probe of the strong force as well as an environment for optimizing event generators with numerous applications in high energy particle and nuclear physics. Looking at electron-proton collisions is of particular interest as many of the complications present at hadron colliders are absent. A detailed study of modern jet substructure observables, jet angularities, in electron-proton collisions is presented using data recorded using the H1 detector at HERA. The measurement is unbinned and multi-dimensional, using machine learning to correct for detector effects. All of the available reconstructed object information of the respective jets is interpreted by a graph neural network, achieving superior precision on a selected set of jet angularities. Training these networks was enabled by the use of a large number of GPUs in the Perlmutter supercomputer at Berkeley Lab. The particle jets are reconstructed in the laboratory frame, using the kTk_{\mathrm{T}} jet clustering algorithm. Results are reported at high transverse momentum transfer Q2>150Q^2>150 GeV2{}^2, and inelasticity 0.2<y<0.70.2 < y < 0.7. The analysis is also performed in sub-regions of Q2Q^2, thus probing scale dependencies of the substructure variables. The data are compared with a variety of predictions and point towards possible improvements of such models.Comment: 33 pages, 10 figures, 8 table

    Top-quark physics at the CLIC electron-positron linear collider

    Get PDF
    ABSTRACT: The Compact Linear Collider (CLIC) is a proposed future high-luminosity linear electron-positron collider operating at three energy stages, with nominal centre-of-mass energies √s = 380 GeV, 1.5 TeV, and 3 TeV. Its aim is to explore the energy frontier, providing sensitivity to physics beyond the Standard Model (BSM) and precision measurements of Standard Model processes with an emphasis on Higgs boson and top-quark physics. The opportunities for top-quark physics at CLIC are discussed in this paper. The initial stage of operation focuses on top-quark pair production measurements, as well as the search for rare flavour-changing neutral current (FCNC) top-quark decays. It also includes a top-quark pair production threshold scan around 350 GeV which provides a precise measurement of the top-quark mass in a well-defined theoretical framework. At the higher-energy stages, studies are made of top-quark pairs produced in association with other particles. A study of t̄tH production including the extraction of the top Yukawa coupling is presented as well as a study of vector boson fusion (VBF) production, which gives direct access to high-energy electroweak interactions. Operation above 1 TeV leads to more highly collimated jet environments where dedicated methods are used to analyse the jet constituents. These techniques enable studies of the top-quark pair production, and hence the sensitivity to BSM physics, to be extended to higher energies. This paper also includes phenomenological interpretations that may be performed using the results from the extensive top-quark physics programme at CLIC.the Spanish Ministry of Economy, Industry and Competitiveness under projects MINEICO/FEDER-UE, FPA2015-65652-C4-3-R, FPA2015-71292-C2-1-Pand FPA2015-71956-REDT; and the MECD grant FPA2016-78645-P, Spai

    Measurement of the charm and beauty structure functions using the H1 vertex detector at HERA

    Get PDF
    Inclusive charm and beauty cross sections are measured in e − p and e + p neutral current collisions at HERA in the kinematic region of photon virtuality 5≀Q 2≀2000 GeV2 and Bjorken scaling variable 0.0002≀x≀0.05. The data were collected with the H1 detector in the years 2006 and 2007 corresponding to an integrated luminosity of 189 pb−1. The numbers of charm and beauty events are determined using variables reconstructed by the H1 vertex detector including the impact parameter of tracks to the primary vertex and the position of the secondary vertex. The measurements are combined with previous data and compared to QCD predictions

    Study of Charm Fragmentation into D^{*\pm} Mesons in Deep-Inelastic Scattering at HERA

    Get PDF
    The process of charm quark fragmentation is studied using D∗±D^{*\pm} meson production in deep-inelastic scattering as measured by the H1 detector at HERA. Two different regions of phase space are investigated defined by the presence or absence of a jet containing the D∗±D^{*\pm} meson in the event. The parameters of fragmentation functions are extracted for QCD models based on leading order matrix elements and DGLAP or CCFM evolution of partons together with string fragmentation and particle decays. Additionally, they are determined for a next-to-leading order QCD calculation in the fixed flavour number scheme using the independent fragmentation of charm quarks to D∗±D^{*\pm} mesons.Comment: 33 pages, submitted to EPJ

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
    • 

    corecore